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1. INTRODUCTION

In a recent paper [1], the mass and sti!ness matrices of rotating tapered and twisted
Timoshenko beams have been derived using standard "nite element methods. The authors
have subsequently used these matrices to solve the free vibration problem of such beams.
The theory developed assumes rectangular cross-section with linearly varying depths and
widths and accounts for the e!ects of shear deformation, rotatory inertia and a given
pre-twist.More importantly, it is based on formulating expressions for the strain energy and
kinetic energy of the beam element. Of course, it is essential to establish these correctly to
ensure high quality sti!ness and mass properties of the element.
In this note, the authors show that there are several inaccuracies and sweeping

assumptions in both the expressions for strain and kinetic energies presented in reference
[1]. The omission of some signi"cant terms in these energy expressions is bound to degrade
the performance of the "nite element, which may lead to considerable errors in the
numerical results. A further aim of this note is to show that the analysis of reference [1],
which is restricted to rectangular cross-sections, can be extended to cover a wider range of
practical cross-sections.
Figure 1 shows the axis system of a tapered beam of length ¸ with its left-hand end at

a distance r
�
from the axis of rotation. The beam is assumed to be rotating at a constant

angular velocity �. In the right-handed Cartesian co-ordinate system chosen, the origin is
taken to be at the left-hand end of the beam, as shown, the >-axis coinciding with the
neutral axis of the beam in the unde#ected position. The Z-axis is taken to be parallel (but
not coincidental) to the axis of rotation, while the X-axis lies in the plane of rotation. The
principal axes of the beam cross-section are, therefore, parallel to the X and Z directions.
The system is free to #ex in the Z direction (#apping) and in the X direction (lead}lag
motion). These two motions can be coupled only through Coriolis forces, but for the system
shown for the present analysis, this coupling is ignored.
The taper is assumed to be such that
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Figure 1. Co-ordinate system and notation for a rotating tapered Timoshenko beam.
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whereA, I
��
, I

��
are the cross-sectional area and second moments of areas about theX and

Z axes, respectively, and c is a constant, namely the taper ratio which must be such that
c(1 because otherwise the beam tapers to zero between its ends. Values of n of 1 or 2 cover
most practical cases, because n"1 gives linear variation of the area of cross-section and
a cubic variation of the second moment of area along the length, whereas the corresponding
variations for n"2 are the second and fourth orders. Thus, a large number of solid or
thin-walled cross-sections can be represented using the values of n as 1 or 2. Samples of
cross-sections covered by n"1 and 2 are given in reference [2]. The subscript g denotes
a value at g on Figure 1 corresponding to the left-hand end of the tapered beam.Young's
modulus E, shear modulus G and density of material �, are assumed to be constant so that
the mass per unit length �A, and the bending rigidities EI

��
and EI

��
and the shear rigidity

kAG vary according to equations (1)}(3).
From Figure 1, the centrifugal tension ¹(y) at a distance y from the origin is given by

¹(y)"�
�

�

�A�� (r
�
#y) dy. (4)

Since the area of cross-section for a tapered beam varies along the length, the term �A
should not be treated as constant and taken outside the integral sign. Unfortunately, the
authors of reference [1] have made this incorrect assumption in their equation (4). This is
clearly incorrect and may lead to unacceptable errors in the results. Assuming the variation
of A in the form of equation (1), the above integral can be easily evaluated so that ¹ can be
expressed as a function of y.

2. EXPRESSION FOR STRAIN ENERGY

Regarding the correctness of the strain energy expression presented in reference [1], the
essential point of this note can be made by simply considering the #exural displacement of
the beam in the >Z plane. However, the procedure described below can be easily extended
to the #exural displacement in the X> plane as well.
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Using the co-ordinate system and notation of Figure 1, the uniform strain �
�
(y) due to the

action of the centrifugal force ¹(y) along is given by

�
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where E is Young's modulus and A is the area of cross-section.
The associated axial displacement u

�
(y) due to the centrifugal force alone is uniform

across the cross-section and follows from
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where the prime denotes di!erentiation with respect to y.
Now introduce a #exural displacementw (y) of the beam neutral axis in theZ direction for

an element of length dy between the ordinates y and (y#dy).
Under combined axial and #exural displacements, the element dy will undergo the

following deformations. On the left-hand face of the element, a point at a distance �� away
from the neutral axis in the Z direction will have the co-ordinates �0, (y#u

�
! �� �),

(�� #w)� whereas the corresponding point on the right-hand face will have the co-ordinates
[0, �y#u

�
! �� �#(1#u�

�
!�� ��) dy�, (�� #w#w� dy)].

Thus the direct strain of the element at a distance �� from the neutral axis, due to bending
and stretching is given by
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Assuming the section rotation �, the shearing strain 	 induced in the element is given by

	"w�!�. (8)

The strain energy due to #exure ;
	
then follows as
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Since the neutral axis passes through the centroid and the area (A) and the second moment
of area (I

��
) of the cross-section are, respectively, given by A(y)"


�
dA and

I
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(y)"


�
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can be simpli"ed as (for simplicity, I

��
is hereafter denoted by I)
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Using equations (4)}(6) and expressing u�
�
in terms of the centrifugal tension ¹(y)
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where C
�
is a constant and ¹ is given by equation (4).
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The strain energy due to shear ;
�
is given by
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where G is the shear modulus, k the section shape factor so that kAG is the shear rigidity of
the beam cross-section.
Substituting the expression for 	 from equation (8) into equation (12) gives

;
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The total strain energy U of the beam is thus
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3. EXPRESSION FOR KINETIC ENERGY

The kinetic energy of the rotating Timoshenko beam element is derived from the velocity
components of a point at a distance �� from the neutral axis. From Figure 1, the three
components of the velocities of this point in the X, > and Z directions are, respectively,
given by
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so that the kinetic energy T of the rotating Timoshenko beam is
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Substituting equation (15) into equation (16) gives
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The "rst integral is constant and the third one is zero so that T takes the following
simpli"ed form:
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where C
�
is a constant

It is signi"cant to note that the term 
�
�

�I����dy is important, particularly for higher
rotational speed �, but has been omitted by the authors of reference [1] as well as by some
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recent investigators [3, 4]. The importance of this term for the case of rotating uniform
Timoshenko beams has been demonstrated in a recent paper [5]. It is considered that the
term cannot be ignored for the case of rotating tapered Timoshenko beams. Further
development of the dynamic motion of the beam then follows from processing the
Lagrangian L"T!U. Only with a correct formulation of L, it is possible to proceed
safely to a numerical model.
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